Wertschöpfung von CO2

Defekte erwünscht

06.03.2024 | ANNA ETTLIN

Ist es möglich, CO2 wieder in Treibstoffe oder andere nützliche Chemikalien umzuwandeln? Durchaus, aber wir können noch nicht genau kontrollieren, welche Chemikalien dabei entstehen. Empa-Forscher Alessandro Senocrate sucht nach Materialdefekten, die uns dabei helfen könnten.

/documents/56164/27615058/EQ82-Synfuels-stopper-schlaeuche.jpg/8da48ebe-a644-4297-b16d-ff70857360ee?t=1701872876230
Empa Forscher analysieren in diesem System mehrere Plattformchemikalien gleichzeitig. Bild: Empa

Können wir die Verbrennung von Erdöl, Erdgas und Kohle einfach rückgängig machen? Mit einer erneuerbaren Energiequelle, etwas Wasser und einem geeigneten Katalysator könnte das überschüssige CO2 aus der Erdatmosphäre zu einer wertvollen Ressource werden, etwa für die Herstellung synthetischer Treibstoffe oder «Synfuels».

An dieser vielversprechenden Idee wird weltweit geforscht, auch an der Empa, denn die Umsetzung gestaltet sich nicht einfach. Nimmt man beispielsweise einen Kupferkatalysator – die am besten erforschte Art von Katalysator für die Konversion von Kohlendioxid – erhält man bis zu 20 unterschiedliche Moleküle, von Kohlenmonoxid und Methan bis hin zu Propanol und Essigsäure. «Manche dieser Verbindungen sind bei Raumtemperatur flüssig, andere gasförmig», sagt Empa-Forscher Alessandro Senocrate. «Es ist extrem aufwendig, all diese Produkte voneinander zu trennen.»

An der Lösung dieses Problems will Senocrate, der im Labor «Materials for Energy Conversion» unter der Leitung von Corsin Battaglia arbeitet, in den nächsten vier Jahren forschen. Das Projekt ist durch einen «Ambizione Grant» des Schweizerischen Nationalfonds (SNF) finanziert und ist in den Nationalen Forschungsschwerpunkt «NCCR Catalysis» eingebettet. Ziel des Projekts ist, neuartige Katalysatoren für die CO2-Umwandlung zu entwickeln. Dabei setzt Senocrate nicht beim Material selbst an, sondern bei sogenannten Defekten. Ein Defekt bildet sich in einem kristallinen Material zum Beispiel dann, wenn in dessen Kristallgitter ein Atom fehlt oder durch ein Fremdatom ersetzt wird. Diese Stellen verleihen dem ursprünglichen Material andere Eigenschaften und können somit als aktive Zentren fungieren, an denen die chemische Katalyse stattfindet.

Wo Batterien nicht ausreichen
/documents/56164/27615058/EQ82-Synfuels-para-neu.jpg/036e47bf-0016-4cef-a4bc-af8643e0f48c?t=1701872875017
Alessandro Senocrate vom Energy Conversion Labor der Empa in Dübendorf. Bild: Empa

Als erstes will der Forscher untersuchen, welche Defekte zu welchen Reaktionsprodukten führen. «Im Idealfall können wir mit diesen Erkenntnissen Katalysatoren designen, die bei der Konversion von CO2 spezifische Moleküle liefern anstatt ein Gemisch», erklärt er. Einige mögliche Zielmoleküle sind für die Industrie von besonderem Interesse. Dazu gehören etwa Kohlenmonoxid und Ethylen. Diese Moleküle sind sogenannte Plattformchemikalien: Sie sind die Ausgangsstoffe für zahlreiche chemische Prozesse, unter anderem bei der Herstellung der meisten Kunststoffe. «Für solche Plattformchemikalien haben wir bereits eine komplette Wertschöpfungskette», so Senocrate. «Allerdings werden sie heute fast ausschliesslich aus Erdöl hergestellt.» Alternative, umweltfreundlichere Quellen für kohlenstoffbasierte Chemikalien – sei es aus der CO2-Konversion oder aus Biomasse – sind also gefragt.

Nebst Kunststoffen können auch Treibstoffe aus diesen Plattformchemikalien hergestellt werden. Weitere Empa-Forschungsprojekte fokussieren sich auf die Herstellung von Synfuels. «Autos lassen sich sehr gut elektrifizieren», sagt Alessandro Senocrate. «Bei Flugzeugen und bei vielen energieintensiven industriellen Prozessen sieht das anders aus.» Hier seien Synfuels sehr sinnvoll.

Der Vorteil von flüssigen Treibstoffen wie Kerosin ist ihre enorm hohe Energiedichte, die diejenige von Batterien um einen Faktor von beinahe 100 übersteigen kann. Mit erneuerbarer Energie produzierte Treibstoffe sind also auch eine besonders attraktive Möglichkeit für die saisonale Energiespeicherung. Die Infrastruktur für den Transport und die Aufbewahrung von Synfuels ist bereits vorhanden, denn sie unterscheiden sich in ihrer Zusammensetzung kaum von fossilen Treibstoffen. Das Einzige, was noch fehlt, ist die Fähigkeit, sie im grossen Stil herzustellen. Senocrate ist indes optimistisch: «Ich forsche erst seit wenigen Jahren auf diesem Gebiet, und trotzdem habe ich schon massive Fortschritte erlebt», sagt der Wissenschaftler. «Natürlich wird es auch einen grossen politischen und gesellschaftlichen Wandel brauchen. Aber aus der Sicht der Materialwissenschaft ist der Fortschritt rasant.»

Die Technologie perfektionieren

Bevor Senocrate mit seinem «Ambizione»-Projekt zu diesem Fortschritt beitragen kann, muss er noch einige Herausforderungen überwinden. Eine der grössten: Genug Defekte ins Zielmaterial einbringen, um eine messbare katalytische Wirkung zu erzielen. Denn der Forscher verwendet mit Absicht ein inertes Ausgangsmaterial, das ohne die Defekte keinerlei Einfluss auf die elektrochemische Reaktion hat. «Dadurch kann ich sehr genau bestimmen, welche Wirkung die jeweiligen Defekte haben», erklärt er.

Sind die Defekte erst einmal charakterisiert, können sie auch in bestehende katalytische Materialien eingebracht werden. «Im Idealfall können wir am Ende des Projekts ein bestehendes System für die CO2-Konversion gezielt verbessern», sagt Senocrate. Solche Systeme sind im «Materials for Energy Conversion»-Labor bereits im Einsatz: Darin testen die Forschenden schon heute unterschiedliche Katalysatoren und Elektrodenmaterialien.

Die Ansprüche an diese Materialien sind hoch: «Für einen industriellen Einsatz muss der Katalysator selektiv, aktiv und stabil sein», erklärt Senocrate. Selektivität heisst, dass er nur ein chemisches Reaktionsprodukt liefert – oder zumindest einige wenige, die sich leicht trennen lassen. Eine hohe Aktivität ist notwendig, um mit möglichst wenig Energie eine möglichst grosse Menge an Treibstoffen oder Chemikalien herzustellen. Und natürlich sollte ein marktreifer Katalysator seine Funktionalität über Tausende von Betriebsstunden aufrechterhalten, also stabil sein. «Bei allen drei Eigenschaften müssen wir noch viel besser werden», sagt der Forscher. «Aber wir sind auf dem richtigen Weg.»


Redaktion / Medienkontakt
Anna Ettlin
Kommunikation
Tel. +41 58 765 4733


Follow us
 

Empa Quarterly#82 Mining the Atmosphere

Um den Klimawandel zu begrenzen, müssen wir nicht nur künftige, sondern auch historische Emissionen kompensieren. Eine Lösung wäre der «atmosphärische Staubsauger»: Wir entziehen der Atmosphäre das überschüssige CO2. Was tun damit? Anstatt den Kohlenstoff für Polymere, Arzneimittel, Fasern, Treibstoffe und Co. aus Erdöl zu gewinnen, nutzen wir atmosphärisches CO2. Das ist die simple, technisch indes enorm anspruchsvolle Idee der neuen Empa-Forschungsinitiative «Mining the Atmosphere».

Lesen Sie das EmpaQuarterly online oder laden Sie das Heft als PDF herunter.


Empa Quarterly#83 Perovskite: Blick in den Kristall

Vor über 180 Jahren wurde im Uralgebirge ein kurioser Kristall entdeckt. Heute ist daraus eine ganze Materialklasse entstanden, die von grossem Interesse für die Forschung ist: die Perovskite. Gemeinsam ist allen Perovskiten ihre Kristallstruktur, die ihnen ungewöhnliche Eigenschaften verleiht. Ändert man die genaue Zusammensetzung des Perovskits, kann man diese Eigenschaften steuern. Genau das machen sich Empa-Forschende zunutze, die aus diesem vielversprechenden Material Solarzellen, Detektoren und Quantenpunkte entwickeln.

Lesen Sie das EmpaQuarterly online oder laden Sie das Heft als PDF herunter.